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Abstract

Controlled experiments have provided strong evidence that changing land cover (e.g.
deforestation or afforestation) can affect the water balance. However a similarly strong
influence has not been detected in analyses of collated streamflow data from catch-
ments with mixed land cover. We tried to explain this “land cover paradox” using5

streamflow observations from 278 Australian catchments, a “top-down” model (the
Zhang formulation of the Budyko model); and a “bottom-up” dynamic hydrological pro-
cess model (the Australian Water Resources Assessment system Landscape model,
AWRA-L). Analysis with the Zhang model confirmed the previously reported absence
of a strong land cover signal. However, absence of evidence does not equate to the10

proof of absence, and AWRA-L was able to reconcile the streamflow data from the 278
catchments with experimental knowledge. Experiments were performed in which the
Zhang model was used to analyse synthetic AWRA-L streamflow simulations for the
278 catchments. This demonstrated three reasons why the Zhang model did not ac-
curately quantify the land cover signal: (1) measurement and estimation errors in land15

cover, precipitation and streamflow, (2) the importance of additional climate factors;
(3) the presence of covariance in the streamflow and catchment attribute data. These
methodological issues are likely to prevent the use of any top-down method to quantify
land cover signal in data from catchments with mixed land cover. Our findings do not
rule out physical processes that diminish land cover influence in catchments with mixed20

land cover, including atmospheric feedback associated with rainfall interception.

1 Introduction

There is strong experimental evidence that changing land cover (e.g. deforestation or
afforestation) can affect the local water balance. Such an influence has been detected
at various scales, from site water balance and atmospheric water flux studies to small25

catchments undergoing change (see review by e.g. van Dijk and Keenan, 2007 and
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references therein). Controlled catchment experiments have demonstrated a change
in mean catchment streamflow after land cover change (typically forest planting or
logging; Bosch et al., 1982; Bruijnzeel, 1990, 2004; Andréassian, 2004; Brown et al.,
2005; Farley et al., 2005). They provide clear evidence that land cover characteristics
affect mean streamflow, although this influence is moderated by a range of climate and5

catchment characteristics as well as vegetation attributes beyond broad land cover
class alone (Andréassian, 2004; Bruijnzeel, 2004; van Dijk and Keenan, 2007). These
conclusions could be corroborated by analysis of collated longer term mean streamflow
(Q) estimates from multiple catchments, provided only catchments with (near complete)
forest cover and herbaceous cover were selected (Holmes et al., 1986; Turner, 1991;10

Zhang et al., 1999, 2001). The collated data were still dominated by small experimental
catchments, however.

Several subsequent studies have attempted to detect a similar land cover influence
by statistically analysing Q from large catchments with mixed land cover (Zhang et al.,
2004; van Dijk et al., 2007; Oudin et al., 2008; Donohue et al., 2010; Peel et al., 2010).15

Most of these studies inversely applied an additive formulation of a Budyko model1

(Budyko, 1974) that explicitly represents two (i.e., “forest” and “herbaceous”) or a small
number of land cover types using:

Qj =
∑
i

FCi ,j f (Pj ,PEj ,wi ) (1)

where Qj , Pj , and PEj are the longer-term average streamflow, precipitation and poten-20

tial evaporation2 (in mm per time unit) for catchment j (out of a total number of 221 and
1508 reported in the various studies), FCi ,j is the fractional cover of land cover type i in
catchment j , and wi a dimensionless model parameter that characterises the hydrolog-
ical behaviour of land cover class i . The influence of land cover is subsequently tested

1Defined here as any rational function that represents the same conceptual model as the
original (see various examples in e.g., Oudin et al., 2008).

2In “evaporation” we include all evaporation and transpiration fluxes.
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by finding the wi values that minimise the root mean square error (RMSE) between
observed and estimated streamflow averages, and interpreting the found parameter
values. These studies have found either a much smaller land cover influence than
found in controlled experiments (Zhang et al., 2004; van Dijk et al., 2007; Oudin et al.,
2008; Donohue et al., 2010; Peel et al., 2010); no statistically significant influence5

(Zhang et al., 2004; van Dijk et al., 2007; Oudin et al., 2008; Peel et al., 2010); or even
an influence opposite to that expected – at least for some land cover classes (Oudin
et al., 2008; Peel et al., 2010) or climate types (van Dijk et al., 2007; Peel et al., 2010).

It is paradoxical that land cover change should have a marked effect on the water bal-
ance of a catchment when it has homogeneous land cover, but not when it has mixed10

land cover. Some possible physical and methodological causes have been suggested
for this “land cover paradox”. Physical explanations include:

1. Catchment size. The nature of controlled experiments puts a limit to the size
of catchments that can be manipulated and the majority of experiments have
been carried out on catchments smaller than 1 km2 (see e.g. tabulated data in15

Andréassian, 2004; Brown et al., 2005). Conversely, data sets of “real-world”
catchments with mixed land cover tend to have average catchment sizes in the or-
der of hundreds to thousands km2 (see respective studies listed earlier). A known
issue with small catchments is the risk of ungauged subterranean transfers (e.g.,
Bruijnzeel, 1990). In addition, while land surface-atmosphere feedbacks perhaps20

can safely be ignored for small catchments, that may not be the case for large
catchments, where land cover certainly influences overall evaporative energy and
may even modulate precipitation (for discussion see Donohue et al., 2007; van
Dijk and Keenan, 2007).

2. Catchment hydrological processes. As catchment experiments require small and25

well defined watersheds they may be expected to have greater relief in compari-
son to larger catchments. Greater relief may mean shallower soils, less infiltration
and therefore more storm flow, a more efficient surface drainage network, and
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lesser evaporation losses from streams, wetlands and groundwater-using vegeta-
tion (van Dijk et al., 2007).

3. Land cover characteristics. Experimental catchments may be expected to have
a more “idealised” and homogenous vegetation cover and fewer activities and
structures designed to reduce storm runoff. In afforestation studies, the selection5

of “suitable” catchments may have created a bias towards low complexity land
cover, whereas land cover after clearing is unlikely to be representative of estab-
lished agricultural landscapes. Large mixed land cover catchments may include
surface runoff intercepting features (e.g. hillside farm dams, tree belts) and unac-
counted surface water or groundwater use (Calder, 2007; van Dijk et al., 2007).10

There are also some potential methodological issues:

4. Other overriding climate and terrain factors. Confident detection and attribution of
a land cover influence requires that other factors are considered and controlled for.
Budyko theory controls for the two most important determinants of the long-term
water balance, P and PE. One might question whether the Budyko framework is15

sufficiently powerful to evaluate the effect from addition to P and PE alone, and
if so, whether indeed land cover is the next most important variable. Additional
factors potentially as or more important than land cover include the phase differ-
ence between seasonal P and PE patterns (Budyko, 1974; Milly, 1994) and other
aspects of their temporal behaviour (e.g. rainfall intensity).20

5. Covariance between land cover and climate. Covariance between land cover and
climate is commonly present in collated catchment data sets due to the correlation
between natural biomes and climate, and because of the role of landscape and cli-
mate in land use and land cover change decisions. For example, catchments with
considerable remnant and plantation forests will usually be found more commonly25

in regions with greater relief and typically associated greater P and lower PE
than their lowland counterparts. Applying an additive response model to a data
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set with covariance between candidate predictors makes erroneous results more
likely. Van Dijk et al. (2007) attempted to control for this effect and concluded that
it influenced the results, but was probably not the only cause for their counterintu-
itive results.

6. Measurement error. Analyses of data from small catchments have not been able5

to detect a significant change in stream flow when land cover is changed in less
than 15–20 % of a catchment (Bosch et al., 1982; but see Trimble et al., 1987;
Stednick, 1996). Arguably, this can be attributed to the influence of measurement
noise on the analysis. Statistically, therefore it might be expected that it is harder
to detect a land cover signal in large catchments with land cover mixtures than it10

is for catchments with homogeneous land cover. Using additive Budyko models
requires estimates not only of Q, but also of catchment average P , PE and frac-
tional cover (FC) of the land cover classes of interest. Errors will occur in each
of these and may affect the analysis results, even more so if errors are not ran-
dom. For example, Oudin et al. (2008) speculated that systematic precipitation15

measurement errors affected their analysis.

1.1 Objective

In this study, we aim to test the hypothesis that methodological issues prevent the use
of simple “top down” methods to accurately detect and quantify land cover influences
by analysing data sets of catchments with mixed land cover. To test this, we used20

mean streamflow observations from 278 non-experimental Australian catchments, the
Zhang formulation of the Budyko model, and a “bottom-up” dynamic hydrological pro-
cess model with explicit representation of vegetation characteristics. Synthetic experi-
ments were performed in which the Budyko model was used to analyse process model
simulations for the 278 catchments. The emphasis on methodological issues does25
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not negate the plausibility of additional, physical causes, and we will discuss some of
these.

2 Methods

2.1 Data

The streamflow data used here were identical to the data used by van Dijk and Warren5

(2010), which is a subset of 278 out of around 326 records used in previous studies
(Guerschman et al., 2008, 2009; van Dijk, 2009, 2010a) and very similar in composition
to Australian catchment data used in other studies (e.g., Zhang et al., 2004; Peel et al.,
2010). Catchment boundaries were derived from a 9′′ resolution digital elevation model
(Fig. 1) and catchments with major water regulation infrastructure were excluded. The10

278 catchments that were selected had good data (based on quality codes) for at least
five, not necessarily consecutive years between 1990 and 2006 (median 16 years).
Woody vegetation cover fraction was mapped on the basis of Landsat Thematic Map-
per imagery for 2004 and precipitation and Priestley-Taylor PE was interpolated at 0.05◦

resolution from station data. Catchment areas varied from 23–1937 (median 278) km2,15

tree cover from 0–90 % (median 25 %), P from 404–3138 (median 836) mm yr−1, PE
from 766–2096 (median 1265) mm yr−1 and Qobs from 4–1937 (median 114) mm yr−1.

2.2 Budyko model

Oudin et al. (2008) tested five different Budyko models formulations and found little
difference in their explanatory power. We chose the model of Zhang et al. (2001)20

because it was used successfully to detect land cover influence in a global streamflow
data set of (mostly small) catchments with homogeneous land cover. For a single land
cover class, the model can be written as:
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Q=
P

1+
P

PE
+w

(
PE
P

)2
(2)

For a catchment with a two land cover classes, forest and herbaceous vegetation,
Eq. (2) can be rewritten as (cf. Eq. 1):

Q=FC(forest)
P

1+
P

PE
+w(forest)

(
P E
P

)2

+FC(herbaceous)
P

1+
P

PE
+w(herbaceous)

(
PE
P

)2
(3)5

2.3 Dynamic model

The dynamical model used is the Australian Water Resources Assessment system
Landscape hydrology (AWRA-L) model (version 0.5; van Dijk, 2010b; van Dijk and
Renzullo, 2011). AWRA-L can be considered a hybrid between a simplified grid-based
land surface model and a non-spatial catchment model applied to individual grid cells.10

Where possible process equations were selected from literature and selected through
comparison against observations. Prior estimates of all parameters were derived from
literature and analyses carried out as part of model development. Full technical de-
tails on the model can be found in van Dijk (2010b) but some salient aspects are
summarised here. The configuration used here considers two hydrological response15

units (HRUs): deep-rooted tall vegetation (“forest”) and shallow-rooted short vegetation
(“herbaceous”). The water balance of a top soil, shallow soil and deep soil compart-
ment are simulated for each HRU individually and have 30, 200 and 1000 mm plant
available water storage, respectively. Groundwater and surface water dynamics are
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simulated at catchment scale. Minimum meteorological inputs are gridded daily to-
tal precipitation and incoming short-wave radiation and daytime temperature. Actual
evaporation is estimated using the Penman-Monteith model (Monteith, 1965), but rain-
fall interception is estimated separately using a variable canopy density version of the
event-based Gash model (Gash, 1979; van Dijk et al., 2001a,b) to account for observed5

high rainfall evaporation rates (for discussion see e.g. van Dijk and Keenan, 2007). The
influence of vegetation on the water balance occurs in a number of ways: compared to
short vegetation, forest vegetation is parameterised to have lower albedo, greater aero-
dynamic conductance, greater wet canopy evaporation rates, lower maximum stomatal
conductance, thicker leaves, access to deep soil and ground water, and adjust less10

rapidly to changes in water availability.
Van Dijk and Warren (2010) evaluated AWRA-L with the configuration and param-

eterisation used here against a range of in situ and satellite observations of water
balance components and vegetation dynamics. This included evaluation against Qobs
from the catchments used in this analysis, as well as flux tower latent heat flux obser-15

vations at four sites across Australia including both forest and herbaceous sites (van
Dijk and Warren, 2010). Latent heat flux patterns for dry canopy conditions were re-
produced well. Comparison of total latent heat flux was difficult due to the large uncer-
tainty in rainfall interception evaporation estimated from the flux tower measurements.
Streamflow records were reproduced with an accuracy that was commensurate to that20

achieved by other rainfall-runoff models with a similar calibration approach. Improved
model parameterisations are currently being developed but for the current analysis
AWRA-L was used with prior estimates.
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2.4 Experiments

2.4.1 Can the land cover paradox be reproduced and be reconciled with the
process model?

We did two tests to see whether we could reproduce the paradoxical results of pub-
lished top-down analyses (sensu Klemeš, 1983; Sivapalan et al., 2003) of collated5

streamflow data from non-experimental catchments. First, we fitted the two parameter
Zhang model (Eq. 3) by minimising the standard error of estimate (SEE) against Qobs
from the 278 catchments. We interpreted the derived parameters and implied land
cover to assess whether we obtained the same paradoxical results of earlier studies in
catchments with mixed land cover.10

Next, we investigated whether the AWRA-L could reconcile the land cover para-
dox, which means meeting two conditions. First, the model needs to reproduce the
observed streamflow from the 278 catchments. We considered performance to be ac-
ceptable if the predictions were as good as that of the calibrated two-parameter Zhang
model or better. Second, the model needs to be in agreement with experimental catch-15

ment studies of land cover change. One test of this would be to reproduce streamflow
changes observed in an actual paired catchment experiment, but unfortunately we did
not have the daily streamflow and meteorological data required from such an experi-
ment available, and one example would have limited statistical significance. Instead,
we used AWRA-L to simulate streamflow from the 278 catchments under conditions20

of full forest and full herbaceous cover, respectively. We compared the resulting wa-
ter balance estimates with the empirical relationships for the respective land cover
type reported by Zhang et al. (2001), who propose two alternative models to esti-
mate Q. The first method (Zhang-A) is to use Eq. (3) with values of w(forest)=2.0 and
w(herbaceous)=0.5, with PE estimated using the Priestley-Taylor formula and a “stan-25

dard” land cover with assumed albedo and aerodynamic conductance. The second
method (Zhang-B) is to use the same approach, but substitute PE by values of 1410
and 1100 mm yr−1 for forest and herbaceous cover, respectively. The latter reduces
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the physical realism of the model, but provides a convenient alternative to where PE
estimates are not readily available, and has been shown to agree well with other em-
pirical relationships (Holmes et al., 1986; Turner, 1991) and data from catchments with
homogeneous land cover (Zhang et al., 2001).

If both the above test were successful, we would be able to conclude that the para-5

doxical results can indeed be reconciled, and appear to be at least partly due to
methodological problems in the application of the top-down method. The subsequent
analyses were designed to try and analyse three potential methodological problems,
viz.: measurement errors, an overriding influence of other environmental factors, and
covariance between land cover and climate.10

2.4.2 Are measurement errors responsible?

One explanation for the reduced or absent land cover impact inferred from catchments
with mixed land cover is the possible impact of measurement results. P , PE, Q and
forest cover fraction (FC) are all prone to estimation errors. In principle, this could
affect values for the two Zhang model parameters that were optimised. To test for15

this, we performed a synthetic experiment in which measurement “noise” was added to
the model streamflow estimates (Qsim). First, a simulated measurement error of 10 %
was added to all 278 original values of FC and mean P , PE and Qsim. The errors were
drawn independently for each variable and each catchment. For FC an error was added
that was drawn from a normal (Gaussian) distribution with mean of zero and standard20

deviation of 0.1; the result was limited within the range 0 to 1. The values of P , PE and
Qsim were multiplied with a factor drawn from a normal distribution with mean of one and
standard deviation of 0.1. Next, the two Zhang model parameters were optimised to the
resulting “noisy” FC, P , PE and Qsim values for all 278 combined. This experiment was
repeated 3000 times. The resulting pairs of w values were compared to those fitted25

to the original FC, P , PE and Qsim values (without added noise), to assess whether
measurement noise led to parameter values suggestive of a smaller than expected
land cover influence.
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2.4.3 Are additional environmental factors responsible?

The premise of the Budyko framework is that mean P and PE are the main deter-
minants of streamflow. Beyond this, however, other climate factors or terrain factors
may be more important than land cover category. To investigate this possibility, we
analysed the AWRA-L simulations for the forest and herbaceous scenarios using the5

Zhang model. For each catchment, we calculated the model parameter (w) value cor-
responding to the streamflow simulated for each land cover scenario (i.e., full forest or
full herbaceous cover) using the following inverted model form (cf. Eq. 2):

w =

P
Qsim(scenario)

− P
PE

−1(
PE
P

)2
(4)

For each land cover category, we attempted to find catchment attributes that could10

explain the variance in inferred w values. We used the same step-wise regression ap-
proach used in earlier analyses of the same streamflow data (van Dijk, 2009, 2010a).
In summary, candidate predictors were selected from a range of catchment attributes
based on the parametric and non-parametric (ranked) correlation coefficients (r and r∗,
respectively). Linear, logarithmic, exponential and power regression equations were15

calculated for all potential predictors, and the most powerful one selected. The resid-
ual variance was calculated and the same procedure was repeated. The catchment
attribute data available included measures of catchment morphology (catchment size,
mean slope, flatness); soil characteristics (saturated hydraulic conductivity, dominant
texture class value, plant available water content, clay content, solum thickness); cli-20

mate indices (mean P , mean PE, humidity index P/PE, remotely sensed actual evap-
otranspiration, average monthly excess precipitation); and land cover characteristics
(fraction woody vegetation, fractions non-agricultural land, grazing land, horticulture,
and broad acre cropping, remotely sensed vegetation greenness). Full details on data
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sources and catchment climate, terrain and land cover attributes can be found in van
Dijk (2009, 2010a).

2.4.4 Is covariance between land cover and climate responsible?

Our catchment data set shows a modest amount of covariance between forest cover
(FC) and P/PE (r = 0.44). Earlier analysis show that this can affect the ability to accu-5

rately determine land cover influence (see van Dijk et al., 2007, for a detailed example).
We performed a further synthetic experiment using the AWRA-L model to test the mag-
nitude of this problem:

1. Each of the 278 catchments was assigned a new “virtual land cover” by randomly
drawing a new value for FC from a normal distribution with the same mean and10

standard deviation as the observed FC values (0.284 and ±0.224, respectively).
Values were truncated to remain within the range 0 and 1.

2. For each catchment, the AWRA-L model was run with the new FC values and the
original meteorological inputs.

3. The two Zhang model parameters were fitted to the resulting 278 Qsim values.15

The experiment was repeated 3000 times, and the results were analysed to determine
whether there was a relationship between any (randomly introduced) covariance be-
tween the FC and P /PE values on the one hand, and the inferred land cover influence
on the other.
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3 Results

3.1 The land cover paradox can be reproduced and reconciled by the process
model

Indicators of the agreement between Q observed in the 278 catchments and values es-
timated by the optimised two-parameter Zhang model (Eq. 3) and the AWRA-L model5

are listed in Table 1. For comparison, the performance of the originally proposed
Zhang-A and Zhang-B models and an optimised Zhang model (Eq. 2) are also shown.

Calibrating the Zhang model parameters led to an improvement in model perfor-
mance and reduction in bias, when compared to the original models. However, re-
ducing the Zhang model to a one-parameter model (that is, making the model in-10

sensitive to land cover), did not degrade model performance (optimised values were
w(forest)= 1.91 and w(herbaceous)= 1.98 vs. w = 1.95, respectively). These results
confirm previously published result that fitting a Budyko model to observations from
non-experimental catchments does not show the expected land cover signal. In other
words, we could reproduce the land cover paradox.15

Table 1 also shows that, despite the lack of parameter optimisation, AWRA-L per-
forms slightly better than the calibrated Zhang models. The AWRA-L predictions of
mean streamflow for the same 278 catchments, but this time for a hypothetical sce-
nario of full forest and herbaceous cover, are compared to the original Zhang-A and
Zhang-B model in Fig. 2. AWRA-L is able to reproduce the approximate differences be-20

tween non-forest and herbaceous catchments predicted by the original Zhang models,
although the forest scenario predictions agree better with the Zhang-B model than with
the Zhang-A model (Fig. 2). It follows that the process model (1) can accurately predict
streamflow from the 278 catchments with mixed land cover, and (2) can reproduce the
land cover signal observed in catchment experiments, as captured by the Zhang et al.25

(2001) models. Therefore, the process model can reconcile the paradoxical results of
the top-down analysis.
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As further evidence, the paradox could also be reproduced by top-down analysis of
the process model streamflow estimates. If a one-parameter Zhang model was fitted
to the modelled Qsim with hypothetical full forest or herbaceous cover, w values 3.6 and
1.0 where found, respectively – producing curves quite similar to the original Zhang-
A and Zhang-B models. However, when the two-parameter Zhang model was fitted to5

the Qsim obtained with actual FC values, the resulting values were much closer, at 2.22
and 1.79, respectively, predicting only a very small land cover signal (average forest
water use is only 2 % greater than herbaceous water use). This shows that the land
cover paradox can also be reproduced with idealised, modelled streamflow data.

3.2 Measurement errors are at least partly responsible10

The introduction of noise in the data led to higher average optimised w values: 2.7
(range 0.6–9.4) for forest and 2.3 (1.3–9.2) for herbaceous cover. Probably more im-
portantly, however, for 39 % of the 3000 replicates the optimised w value for forest was
actually lower than for herbaceous cover. It follows that random errors in the observa-
tions are likely to reduce the detectable influence of land cover on streamflow.15

3.3 Underlying climate factors may be responsible

The distribution of w values calculated from simulated streamflow for individual catch-
ments appeared approximately log-normally distributed and therefore all values were
log-transformed before step-wise regression analysis. The ratio P/PE itself did not
explain variance in either land cover scenario (r2 =0.1–0.2).20

Somewhat unexpectedly, the most powerful predictor of variation in w values varied
between the forest and herbaceous cover scenarios. In the full forest cover scenario,
PE itself explained 45 % of the variance in log-transformed w values (see Fig. 3a).
Other predictors did not explain any of the residual variance. In the full herbaceous
cover scenario, depth-weighted average event precipitation (DWAEP, calculated as25

the sum of squared daily rainfall totals divided by total rainfall) explained 33 % of the
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variation (Fig. 3b), whereas mean event precipitation (total rainfall divided by the num-
ber of rain days) explained 27 % of variation (instead of, not in addition to the variation
explained by DWAEP). Both are indicators of the irregularity of rainfall distribution (see
van Dijk, 2009 for definitions). Other predictors did not explain any of the residual
variance.5

It is concluded that other climate factors than P/PE alone can have considerable
influence on catchment response and be expressed in w values.

3.4 There is structure in the data set that is at least partly responsible

Using streamflow simulated for randomly generated hypothetical forest cover fractions
(N = 3000), Zhang model parameter values of 3.4±0.7 (range 1.9–6.1) and 1.1±0.110

(0.9–1.4) were fitted for forest and herbaceous cover, respectively. These average
values are relatively close to the w values of 3.6 and 1.0 fitted for the full forest and
herbaceous cover scenarios (experiment 1). In some experiments the optimised Zhang
parameters were similar to the “full cover” ones, whereas in other experiments they
were very close (Fig. 4a) (it is noted that w(herbaceous) never exceed w(forest), unlike15

in the measurement error experiment). At first instance, it would seem tempting to
conclude that the covariance between FC and P/PE in the original data set (r = 0.44)
and was the main cause for the underestimation of land cover influence. However, no
relationship was found between the fitted parameter pair and the covariance between
forest cover and P/PE that introduced into the data set (Fig. 4a). Nonetheless, the20

manipulation of the data must have introduced another form of hidden structure in the
data set that affected the optimised parameter values.
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4 Discussion

4.1 The “land cover paradox” can be reproduced and methodological issues
are likely to be responsible

Despite their simplicity, Budyko models have shown impressive skill in predicting mean
catchment Q from P and PE alone, when compared to more complex dynamic catch-5

ment models. Indeed in comparison with the more complex AWRA-L model, the Zhang
model could achieve very similar performance in explaining the observed catchment
streamflow averages, although only after calibration. It was this same calibration, how-
ever, that produced land cover parameter values that could not be reconciled with the
results of experimental catchment studies, thus reproducing the paradox found in pre-10

vious studies. Our results demonstrate that a dynamic hydrological process model can
reconcile this paradox, and therefore it is likely to be a methodological problem rather
than a physical reality.

The synthetic experiments demonstrated that all methodological issues tested for
(measurement errors, the presence of other important uncontrolled factors, structure15

in the catchment data set) can contribute to the failure to accurately quantify land cover
influence with the Budyko model used. In all cases, underestimation of the land cover
signal was the most likely result. Desirable aspects of Budyko models are their con-
ceptual simplicity and the minimal number of parameters. However, in qualifying the
principle of Occam’s Razor, Albert Einstein (1934) proposed that “the supreme goal of20

all theory is to make the irreducible basic elements as simple and as few as possible
without having to surrender the adequate representation of a single datum of experi-
ence”. On the basis of our results we conclude that, for the purpose at hand, Budyko
models fail at the second part of this statement; that is, they are too simple to ade-
quately quantify the influence of land cover in collated data sets of streamflow from25

catchments with mixed land cover.
Although we only tested one particular Budyko model, previous studies suggest that

conclusions would likely have been very similar if any other Budyko model had been
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used, due to the identical conceptual structure and similar function form (see e.g.,
Oudin et al., 2008). Moreover, we argue that the methodological issues with hetero-
geneous data sets such as the one we analysed are not limited to the application of
Budyko models but are likely to prevent accurate detection with other top-down ap-
proaches as well.5

There have been attempts to increase the predictive performance of the Budyko
models by including additional variables, often within a stochastic framework (e.g.,
Porporato et al., 2004). Those not related to land cover include absolute PE values
(Peel et al., 2010), solar radiation, phase differences between the seasonal P and PE
patterns (Donohue et al., 2010), and the daily distribution of precipitation (see review in10

Gerrits et al., 2009). Our results suggest that some of these factors may indeed exert
a similarly large or larger influence on catchment response. However, trying to control
for these additional factors introduces further parameters and observations with asso-
ciated uncertainty, and ultimately such an approach must fall prey to the very issue that
top-down approaches are intended to avoid, that is, creating an underdetermined (or15

undetermined) problem in which competing hypotheses create similar outcomes and
therefore cannot be tested.

This is obviously not avoided by the use of dynamic process models. However such
models are arguably more suitable to make process assumptions more explicit and
allow these to be tested against different types of observations with different spatial20

and temporal characteristics. In light of this, we question whether it is advisable to
calibrate hydrological models to heterogeneous data sets such as the one analysed
here. Arguably, it is sufficient to demonstrate that the observations can be reproduced
by a (more complex) theory and therefore can be reconciled with experimental knowl-
edge. In this context, the Budyko framework can be seen as a valuable benchmark25

test, whose predictive power a successful competing theory should be able to repro-
duce or exceed (cf. van Dijk and Warren, 2010), but perhaps not as a suitable inference
method.
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Strictly speaking, our results are only valid for one particular data set. However, all
factors we investigated negatively affected accurate quantification of the land cover sig-
nal. We consider it inevitable that at least some of these aspects (e.g. measurement
errors, mixed land cover) will be encountered in any heterogeneous streamflow data
set from large catchments with mixed land cover. Zhang et al. (2001) showed that this5

need not prevent detection of land cover impacts in data from catchments that repre-
sent “extreme” scenarios and in controlled experiments. In particular paired catchment
experiments are much more likely to adequately control for climate and terrain fac-
tors and thereby allow accurate quantification of the land cover influence. Apart from
experimental issues associated with such necessarily small-scale experiments (such10

as subterranean leakage), a critical issue in the extrapolation of the results from such
experiments will be the degree to which hydrological processes and land cover charac-
teristics are representative for those in larger, non-experimental catchments (see van
Dijk and Keenan, 2007 for a discussion). More complex process models probably have
a role to play here, as the influence of such representational errors may be investigated15

in model experiments.

4.2 The role of physical causes for the paradoxical result

We did not explore physical causes for the inability to adequately detect a land cover
signal in previous Budyko model applications in large catchment data sets, but they
may also play a role. The AWRA-L model was not considered suitable to explore all po-20

tential processes in-depth; for example, it does not simulate land surface-atmosphere
feedbacks, impacts of human interferences such as farm dams, roads and soil man-
agement, and redistribution of water through overland and subsurface flow within hill
slopes. The model does describe some other potential feedback mechanisms, includ-
ing evaporation from streams and riparian areas and (in an implicit manner) the lateral25

redistribution of groundwater. The role of these in simulations can be evaluated by
comparing Qsim values generated with observed forest cover to estimates calculated
as the weighted average of Qsim for the extreme land cover scenarios. The former were
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on average 10 % smaller than the latter, representing an average 1.4 % of catchment
rainfall and 1.7 % of catchment streamflow. In other words, within the model structure
there is indeed scope for water not used in herbaceous areas to be evaporated in sec-
ond instance from forest areas or the drainage network, thereby attenuating land cover
influences. We are not able to validate the magnitude of the simulated fluxes against5

experimental data however.
Consideration of the main causes for simulated hydrological changes associated

with land cover change provides some further insight into reasons why large catch-
ments with mixed land cover might behave differently from small homogenous ones. It
appears that the main cause for the different hydrological response is predicted to be10

the greater rainfall interception losses from forest vegetation (Fig. 5). The approximate
difference represents around 10–15 % of rainfall, which is consistent with published
experiments (e.g., Roberts, 1999) although much greater differences can occur under
some circumstances (e.g., Schellekens et al., 1999; McJannet et al., 2007). Despite
uncertainty around the physics of rainfall interception, a priori it would seem plausible15

that that the associated rapid return of moisture to the atmosphere may influence rain-
fall generation downwind (cf. D’Almeida et al., 2007; Pielke et al., 2007; van Dijk and
Keenan, 2007). If this is indeed the case, then accurate prediction of the influence
of land cover change on the water balance of large catchments may depend on the
spatial distribution of precipitation and how it is measured and represented in models.20

5 Conclusions

Although land cover is known to affect the water balance, attempts to quantify a similar
influence in collated streamflow data from catchments with mixed land cover have not
been successful. We conclude that this “land cover paradox” is a consequence of
methodological problems in the use of top-down methods to analyse such data sets.25

More specifically:
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1. Budyko models are too simplistic to adequately detect and quantify the influence
of land cover in complex collated data sets of streamflow from catchments with
mixed land cover, due to the measurement and estimation errors, additional cli-
mate factors, and the heterogeneous and structure nature of the data.

2. Using a dynamic hydrological process model, we were able to reconcile stream-5

flow response from 278 catchments with mixed land cover with experimental
knowledge. This emphasises that the absence of evidence (from top-down meth-
ods) does equal the proof of absence of land cover influence.

3. At least some of these methodological issues are likely to be found in any hetero-
geneous streamflow data set from catchments with mixed land cover.10

4. There are reasons to suspect there may also be physical causes for the failure to
adequately detect a land cover signal in large catchments. This includes the pos-
sibility of atmospheric feedback mechanisms associated with rainfall interception.
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Farley, K., Jobbágy, E., and Jackson, R.: Effects of afforestation on water yield: a global syn-15

thesis with implications for policy, Global Change Biol., 11, 1565–1576, 2005.
Gash, J. H. C.: An analytical model of rainfall interception by forests, Q. J. Roy. Meteorol. Soc.,

105, 43–55, 1979.
Gerrits, A. M. J., Savenije, H. H. G., Veling, E. J. M., and Pfister, L.: Analytical derivation of

the Budyko curve based on rainfall characteristics and a simple evaporation model, Water20

Resour. Res., 45, W04403, doi:10.1029/2008wr007308, 2009.
Guerschman, J.-P., van Dijk, A. I. J. M., McVicar, T. R., van Niel, T. G., Li, L., Liu, Y., and Peña-

Arancibia, J.: Water balance estimates from satellite observations over the Murray-Darling
Basin, CSIRO, Canberra, Australia, 93, 2008.

Guerschman, J. P., van Dijk, A., Mattersdorf, G., Beringer, J., Hutley, L. B., Leuning, R.,25

Pipunic, R. C., and Sherman, B. S.: Scaling of potential evapotranspiration with MODIS data
reproduces flux observations and catchment water balance observations across Australia,
J. Hydrol., 369, 107–119, 2009.

Holmes, J. W. and Sinclair, J. A.: Water yield from some afforested catchments in Victoria,
in: 17th Hydrology and Water Resources Symposium, Brisbane, Institution of Engineers,30

Australia, Barton, ACT, Australia, 1986.
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Table 1. Performance indicators of the original Zhang et al. (2001) models (Zhang-A and
Zhang-B; see text for explanation), the Zhang model with one and two calibrated parame-
ters, respectively, and the AWRA-L with prior parameter estimates. SEE= standard error of
estimate, MAE=mean absolute error, and bias=mean bias (all in mm yr−1); rel. bias=mean
relative bias and FOM= fraction of values overestimated by model (in %).

SEE MAE Bias Rel. bias FOM

Zhang-A 119 97 79 44 % 91 %
Zhang-B 136 114 86 47 % 86 %
Zhang-2 parameter 84 54 4 2 % 62 %
Zhang-1 pararameter 84 54 4 2 % 62 %
AWRA-L 78 50 1 1 % 54 %
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 599 

Fig. 1. Location of the 278 Australian catchments for which streamflow data were used in the 600 

analysis. 601 

  602 

Fig. 1. Location of the 278 Australian catchments for which streamflow data were used in the
analysis.
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a)  603 

b)  604 

 605 

Fig. 2. Comparison of AWRA-L simulated streamflow for the 278 catchments for scenarios 606 

of forest cover (green triangles) and herbaceous cover (orange circles) shown in two different 607 

ways. Also shown are the two models proposed by Zhang et al. (2001): (a) Zhang-A and (b) 608 

Zhang-B. 609 
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Fig. 2. Comparison of AWRA-L simulated streamflow for the 278 catchments for scenarios
of forest cover (green triangles) and herbaceous cover (orange circles) shown in two different
ways. Also shown are the two models proposed by Zhang et al. (2001): (a) Zhang-A and (b)
Zhang-B.

4147

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/4121/2011/hessd-8-4121-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/4121/2011/hessd-8-4121-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 4121–4150, 2011

Top-down analysis of
collated streamflow

data

A. I. J. M. van Dijk et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

 612 

a)   613 

b)   614 

Fig. 3. Relationship between the catchment variable that explained most of the variance in 615 

(log-transformed) Zhang model parameter (w) values inferred from the synthetic land cover 616 

experiment, (a) potential evaporation (PE) for forest catchments and (b) depth-weighted 617 

average event precipitation (DWAEP) for herbaceous catchments. 618 
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Fig. 3. Relationship between the catchment variable that explained most of the variance in
(log-transformed) Zhang model parameter (w) values inferred from the synthetic land cover ex-
periment, (a) potential evaporation (PE) for forest catchments and (b) depth-weighted average
event precipitation (DWAEP) for herbaceous catchments.
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a)  620 

b)  621 

Fig. 4. Zhang model parameter values fitted to synthetic streamflow estimates for 278 622 

catchments produced by AWRA-L with random forest cover fractions assigned to each of the 623 

catchments. Data points represent the results of 3000 replicate experiments. (a) Zhang model 624 

parameter data pairs fitted in each experiment showing a well-defined relationship; (b) the 625 

difference between log-transformed parameter values versus the correlation between 626 

synthetic forest cover fraction (FC) and catchment humidity (P/PE) introduced in the 627 

experiment, showing no relationship (r=0.11). 628 
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Fig. 4. Zhang model parameter values fitted to synthetic streamflow estimates for 278 catch-
ments produced by AWRA-L with random forest cover fractions assigned to each of the catch-
ments. Data points represent the results of 3000 replicate experiments. (a) Zhang model
parameter data pairs fitted in each experiment showing a well-defined relationship; (b) the dif-
ference between log-transformed parameter values versus the correlation between synthetic
forest cover fraction (FC) and catchment humidity (P/PE) introduced in the experiment, show-
ing no relationship (r =0.11).
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  630 

Fig. 5. Contribution of different evaporation terms to the increase of streamflow after forest 631 

removal estimated by the AWRA-L model, expressed as a percentage of rainfall. Values 632 

represent fluxes averaged over three groups of catchments, intended to represent (from left to 633 

right) water-limited (P/PE<0.75), transitional, and energy-limited (P/PE>1.25) environments. 634 

Es=soil and open water evaporation; Et=transpiration; Ei=rainfall interception losses. 635 
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Fig. 5. Contribution of different evaporation terms to the increase of streamflow after forest
removal estimated by the AWRA-L model, expressed as a percentage of rainfall. Values rep-
resent fluxes averaged over three groups of catchments, intended to represent (from left to
right) water-limited (P/PE<0.75), transitional, and energy-limited (P/PE>1.25) environments.
Es = soil and open water evaporation; Et = transpiration; Ei = rainfall interception losses.
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